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SUMMARY 

Flows of fluids with single-integral memory functionals are considered. Evaluation of the stress at a material 
point involves the deformation history of that point, and a dominant computational cost in finite element 
approximation is the construction of streamlines. It is shown that the simple crossed-triangle macro-element 
is in many ways an ideal finite element for the difficult non-linear, non-self-adjoint problem. The question as to 
whether this element produces convergent velocity and pressure solutions is addressed in the light of its failure 
to satisfy the discrete LBB condition. The effect of the element’s ill-disposed (‘spurious’) pressure modes is 
discussed, and a pressure smoothing scheme is given which gives good results in Newtonian and non- 
Newtonian flows at various Reynolds and Deborah numbers. As an example of the element’s success in 
modelling such flows, the problem of pressure differences in flows over transverse slots is studied numerically. 
The results are compared with experimental observations of such flows. The effect of fluid memory on the 
relation between first normal-stress differences and pressure differences is investigated. 
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1. INTRODUCTION 

The central dificulty in solving flow problems with memory dependence is that the stress at a 
material point depends on the deformation history of that point. If one limits oneself to 
consideration of stationary solutions, the problem is somewhat simplified, since only a single 
velocity field determines the stress. If one considers finite element approximations, there is a further 
simplification in that every particle’s deformation history is specified by a finite number of nodal 
degrees of freedom, the assumed interpolations, and often an assumed far-field solution (a 
‘predecessor flow’). Early attempts to develop methods based on these observations were plagued 
by a variety of difficulties.1,2 One of the most basic problems was the calculation of strain at 
historical times relative to the present configuration This involves the construction of one or more 
particle paths per finite element, passing through many adjacent elements in highly elastic fluids. 

The purpose of this paper is to show that a particular finite element is ideal for such 
computations-allowing the determination of virtually exact relative strains in a finite element 
trial velocity field. The element is the crossed-triangle macroelement, discovered by Nagtigaal et 
~ 1 . ~  and analysed by M e r ~ i e r . ~  We refer to this element as the NRC element (for ‘Nagtigaal 
redundant constraint’). This element fails, in a most dramatic way, to satisfy the discrete LBB 
condition. Therefore much of the discussion in this paper centres on the deceptively simple 
question as to whether the element can be expected to work even in Stokes flow. We will show that 
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the failure of the element to satisfy the LBB condition and the reasons for its success are two sides of 
the same coin, and are explainable in terms of an error analysis which does not require the LBB 
condition. 

In non-Newtonian flows, normal forces are crucially important, which implies that accurate 
pressures must be obtainable from elements chosen for these flows. Because the NRC element fails 
the LBB condition, it needs a post-processing of the computed pressures to remove unstable 
modes.5 We demonstrate a simple and efficient projection method, which has worked well in 
computational practice. We present numerical evidence which shows that convergence of 
smoothed pressures occurs in Stokes flow problems with known exact solutions. We give evidence 
of the NRC element’s success in modelling Newtonian and non-Newtonian fluids when inertial 
effects are included. We consider only plane flows here, but recent related work6 shows that the 
axisymmetrical version of the NRC element7 has the same attractive properties as the plane NRC 
element. 

This paper serves as a companion to Reference 8; here the emphasis is on the necessity for and 
the apparent success of the NRC element in modelling steady flows of memory fluids. The 
numerical results are presented primarily as evidenee of the satisfactory performance of the NRC 
element, though we do attempt to place our results in the context of their possible rheological 
significance. In Reference 8, the emphasis is on the presentation of an over-all picture of the 
numerical method, a report of the computational performance of the method, and a more detailed 
investigation of the rheological implications of results similar to those reported in this paper. 

2. STEADY FLOWS OF MEMORY FLUIDS 

2.1. Equations of motion 

We solve the equations of steady flow, 

V . O +  F = ~ ( u . V ) U  

for a velocity field, u. Incompressibility implies p = constant and 

a = d - p I  
V , u  = 0 

for a suitably chosen hydrostatic pressure function, p. 

2.2. The constitutive equations 

The constitutive equations we employ are of the following form proposed by Curtis and Bird9 

(3) 1 
d = d’ - -yo’’ 

2 1 1 + 4 2 ) 1  

Td is the disengagement time. Its magnitude determines the effective memory of the fluid. E is the 
link-tension coefficient of the Curtiss-Bird model.’ The kinematic tensors A, and B, are functions 
of the Cauchy and Finger strain tensors’0311 of the deformation which carries the fluid from its 
reference state at time z = 0 to its configuration at historical time z. B, is also a function of the 
strain-rate, j(O), at the present time z=O. In our computations we have employed Currie’s 
approximation to A, and B,.l0 The memory functions of equation (3) are given by (keeping in 
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mind that z < 0): 

45 

(4) 

With this normalization, the parameter po may be used to adjust the zero-shear vi~cosity,~ which is 

Y(0) = Po(1 + 28/31 ( 5 )  
It should be noted that both A, and B, are functions of the position variable and are, in principle, 

defined everywhere in the domain of the problem. The time dependence implied by equation (3)  
arises by evaluating these tensors along the historical path followed by a particle which is at point 
xo at time z = 0. Thus, both of the integrals in equation (3)  are path integrals along a path 
parameterized by T .  Construction of the path and evaluation of the path integral are numerical 
procedures crucial to the success of our methods and will be discussed thoroughly below. With 
E = 0, the Curtis-Bird equation ( 3 )  becomes identical to the Doi-Edwards equation,12 and is a 
constitutive equation of the BKZ type." Many equations have a form similar to that described 
here" and can be treated by techniques described below. A simple example is the Maxwell fluid 
equation which can be obtained from equation (3)  by setting E = 0, choosing A, to be the Finger- 
strain tensor, and taking w ~ , ( T )  = eT1'J. The computations of Reference 1 were carried out with this 
model, and the interested reader may find more background material on memory fluid problems 
there. 

We will shortly describe the calculation of the integrand of equation ( 3 )  at various historical 
times, given a finite element trial velocity field. Presuming that this can be done, the evaluation of 
the stress can be carried out in analogy to the Laguerre integration employed in References 1 and 2. 
Quadrature formulae with specified degrees of precision with respect to the weighting functions 
W Z ~ ( T )  and rn2(z) can be generated by classical orthogonal polynomial  technique^.'^"^ The time 
integral in equation ( 3 )  is replaced by a finite weighted sum: 

where f ( s )  can be either integrand of equation (3) and m(s) the corresponding memory function. 
Then oi and zi are the weights and points computed once and for all for the appropriate memory 
function. 

2.3. The Galerkin equation 

incompressibility is enforced by a penalty' 
As in Reference 1, we employ a standard Galerkin form of the equations of motion, in which the 

[d.Vv + 2z(V~)(V-v) + p[(u.V)u]~ - v-F]dQ = 0 (7) 

where z is the penalty parameter and SZ is the spatial domain of the problem. Pressure is computed 
by 

p =  -2zv.u (8) 
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Equation (7) is restricted to u, v drawn from a finite element trial space, Sh. Given any estimate uhcSh 
for the solution, we need to be able to compute the residual of equation (7) on which to base an 
iterative correction scheme. In order to do this, a spatial numerical integration scheme must be 
employed, which results in a discrete finite sum in place of the space integral in equation (7). The 
iterative correction scheme which is currently employed is the inverse Broyden methods"s which 
iterates to a solution of equation (7) without the need for an exact tangent matrix.' What is needed 
to complete this scheme is some way to compute the integrand of equation ( 3 )  at the temporal 
integration points. This calculation is the dominant computational cost of our procedure. A choice 
offinite element suitable to employment in penalty methods which makes this computation easy in 
the central focus of what follows. 

A non-linear iteration scheme using one or many evaluations of the tangent matrix-Newton's 
or modified Newton's method"-does seem possible and, indeed, highly desirable. The problem is 
that such a tangent matrix would be neither banded nor s y m m e t r i ~ . ~ , ' * ~ ~  New technology is 
required both to compute such a tangent matrix and to solve the resulting linear systems. 

3. COMPUTATION OF THE MEMORY INTEGRAND 

Since the spatial integrand has become a weighted sum with the employment of a spatial 
integration formula, the memory portion of this approximation can be written' 

where 6; is a weight, 5; an integration point in element e, in which there are me integration points. 
A standard element integration scheme can be used; the other contributions to equation (7) can be 
computed using appropriate reduced or upwinded" integration rules as required. The point is that 
the stress at time z = 0 at particles 5; is needed. This can be accomplished if the relative strain 
referred to these particles can be computed.' 

3.1. Particle tracking 

Let x(z) be the path followed by a particle which resides at 4; at time z = 0. Let F,(z) denote the 
gradient of the deformation' carrying 5; to x(z). These are related to a steady velocity field uh by the 
tracking equations:1,2,21 

X(.) = u"x(z)] 

x(0) = t; 
F,(z) = Vuh[x(z)]Fo(~) 
F,(O) = I 

The Cauchy and Finger strain tensors are readily computed from F,(z), and in turn A,@) and B,(z). 
These are needed only at the temporal integration points, zi, of equation (6). Further details of the 
tracking procedure may be found in Reference 1. Suffice it to say that if equations (10) can be solved 
for a uhcSh--exactly or approximately-our method can proceed. 

3.2. Eliminating tracking: the stream and drgt functions 

In Reference 2, a predictor-corrector method for solving the path equations of equations (10) 
was employed; similar methods have been proposed in finite-difference models.22 The approach we 
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have attempted is to obtain elementwise analytic solutions. Suppose such a solution is known on 
one element, it can be extended from element to element by substituting interface conditions for the 
initial conditions in equations (SO).' By construction of the particle path from one element 
boundary to another, the whole path can be constructed and strain accumulated.' But suppose 
further that on each finite element a stream function is known, then its level curves and their 
intersections with the element boundaries determine the particle path for a particle in the flow-field 
U" and an expression for the strain at time z = zi. Transit times can be determined for two points on 
the same streamline, ~ ( t )  and x(z), if a 'drift function' is knowni4 for which 

w[x(t)] - w[x(z)] = t - z (11) 
In view of the fact that particle paths may be pieced together from element to element, all that is 
required is knowledge of the drift function on each element. This can be determined in principle by 
finding a function w(x) whose material derivative in the element flow is the constant 1. But, except 
for special, simple elements, this cannot be done analytically. 

If the suppositions of the previous paragraph can be realized, the tracking procedure becomes 
one of piecing together element streamlines emanating from ti, accumulating F,(z) at element 
interfaces' and evaluating F,(zi) when the finite element is encountered which contains the point 
x(zi), We turn our attention to a remarkable finite element, which up to an order S/z, has true 
streamlines, is suitable for employment in penalty methods, and for which both w(x) and F,(z) are 
known analytically in each element in terms of nodal values. Yet this element is a simple, 
geometrically flexible C ,  element. 

4. THE NRC MACROELEMENT 

As illustrated in Figure 1, the NRC element is a quadrilateral formed by four linear trianglesz3 
whose interior sides define the diagonals of the quadrilateral. A standard area-co-ordinatez3 
transformation is used for generation of all element quantities from a reference triangle. The 
geometry of each macro is uniquely specified by specifying the corner co-ordinates, Sf (the location 
of the central node, C", is uniquely determined by Sf). If static condensationz4 is used on the central 
node, assembly and band/profile structure are the same for this element as for the bilinear 
isoparametric re~tangle,'~ which implies that much code can be shared between implementations 
of the two elements. Note that the NRC element requires the additional computational expense of 
static condensation and recovery of central nodal values. This is substantial in view of the evidence 
presented below that the elements are equally accurate. What is gained, however, is crucial to the 
success of the method presented here. 

r e  

Figure 1. NRC macroelement showing (A) local element numbering and nodal numbering scheme and (B) global nodal co- 
ordinate vectors. Note that C, lies on the intersection of macro diagonals 
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We employ a one-point centroidal integration formula on all terms of equation (7). Note that for 
Stokes flow (i.e. let p = 0 and take the limit of equation (7) as TCIwO), this formula is exact. Let Th 
denote the trial space of piecewise constant pressures, based on the individual triangles. Consider 
the following related Galerkin equations: 

( A )  Lagrange multiplier 

jQ[d. Vvh - phV.vh - qhV.uh + p[(uh.V)uh].vh -vh.F]dQ = 0, Vvh€Sh, qheTh 

( B )  Perturbed Lagrangian 
r 

I 
[ 6' .Vvh - phV.vh - qhV.uh + ~ [ ( u ~ * V ) U ~ ] * V ~  ---phqh - vh.F]dQ = 0, Vvh€Sh, qh€Th 

22 

The equivalence theorem of Reference 16, which generalizes that of Reference 15 to non-self- 
adjoint problems, implies that when the one-point formula is applied uniformly to (A), (B) and 
equation (7), equation (7) and (B) produce the same solutions. We assume that conditions are 
satisfied that guarantee the convergence of these solutions to the solution of (A) as ZHCO (see, for 
example, Reference 17), though we know of no rigorous proof in the non-Newtonian case. Note 
that the integration is exact for Stokes flow and for the pressure terms for any Td and p .  

One may easily deduce that for (A) 

jQ qhV.uhdR = 0, Vqhc Th 

JQ qhV.uhdQ = - - iz jQ qhphdQZ, Vqh€Th 

(12) 

and V.Sh E Th. Thus V*uh = 0 pointwise for any solution to (A). For (B) or equation (7) 

(13) 

1 
22 

With the NRC element, we can set qh = V.uhl, + -phle  and thus deduce from equation (13) that 

pointwise in element interiors. We should point out that only very special elements, such as the 
NRC, have discrete Lagrange multiplier solutions which satisfy V.uh = 0 and discrete penalty 
solutions which satisfy equation (14). It is more usual for the right-hand side of equation (14) to 
involve additional terms which are governed by mesh spacing and do not vanish in the infinite limit 
of the penalty. The bilinearlconstant-p elements of Reference 1 have this feature, and the larger 
compressibility of the discrete solutions obtained using this element probably contributed to its 
less than adequate performance. 

We next outline tracking procedures used with the NRC element. In order to evaluate 
equation (3) at 5; we must, as already noted, evaluate the strains along the historical path of the 
particle which is at 5; at z = 0. What follows will apply rigorously to a Lagrange multiplier 
solution, which in view of equation (14) and the fact we take z = 0(106), is a minor perturbation. 
We employ iterative schemes for which the linear constraint equations (12) or (13) are satisfied at 
each iteration, therefore the above results apply to u", which are iterates in such schemes. 
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Consider a typical triangle, and define 

A = Vuh = [aij] 

A = a1sa22 - a12a21 
6 = J( - A) 

(15) 

Note that since a, , + a22 = 0,6 is real or pure imaginary, and the eigenvalues of A are i- 6. We have 
an element stream function: 

$(x1,x2) =$[(a,, - a22)x1x2 + a12xt - a,,xKl+ U,X, - u2xl + c (16) 
where Ui is the ith component of uh at the triangle centroid and c is an arbitrary constant. The path 
across the element is known implicitly as a level curve of equation (16). 

Since the tracking equations (10) are linear on the triangle, we have an explicit solution, for the 
strain: 

where t, is the time of encounter with the boundary of the triangle, as illustrated in Figure 2. 
Equation (17) is used when an element is encountered which contains x(zi). 

Particle paths need not actually be generated. Only the intersections of the path across a triangle 
with the triangle’s boundaries we needed. They are obtained by finding x, on the straight line 
defining the triangle boundary satisfying t,b(x,) = $[x(t,)]. This can be done with the quadratic 
formula. All that is needed to determine if a time integration point, ti, is in the current triangle is to 
find the time, z,, of encounter with x,, using the drift function with x, = x(z,), 

w(x,) - w(x,) = 2, - 2 ,  (18) 

The explicit drift function of linear elements was derived by one of us (Bern~tein’~). There are three 
cases according to the characteristics of the path equation (10) system: 

D r f t  function 

Case I: hyperbolic, A < 0. 

Figure 2. A conic streamline/particle path across an NRC subtriangle; ~ ( t , )  and x( t , )  are particle positions at historical 
times z, and z, of boundary encounter, and x ( z i )  is the position of at which a temporal integration point is encountered 
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Cuse 2: elliptic, A > 0. 
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1 
6 

w(x) = -tane1 4 +f($) 

Case 3: parabolic, A = 0. 

w(x) = 4 + f($) 
For case 3 there are several separate subcases for 4 which may be found in Reference 6. The f ($)  in 
each case denotes an arbitrary function of the stream function which is not needed in equation (18), 
since x, and x, are on the same level curve. Note that the element characteristics determine the 
conic family to which the element streamlines belong. The multiple values of the inverse tangent 
properly give multiple arrival times corresponding to particle circulation in a vortex. The 
streamlines only close in an element containing the centre of a vortex; elements may be elliptic, 
whether or not they contain vortex centres. 

These analytic properties of the NRC element have led to a substantial improvement over the 
procedure described in Reference 1. There the bilinear element was employed with an assumed 
constant-gradient field for the purposes of tracking. This had two serious drawbacks: first, on 
regular meshes this is equivalent to using uniform reduced integration; secondly, equation (14) does 
not hold, thus there is compressibility error as a function of the mesh spacing. But the NRC fails to 
satisfy the discrete LBB c ~ n d i t i o n . ~ ’ ~ ~ * ~ ~ - ~ *  There is then a serious question as to whether the 
element is stable even for Stokes flow. 

5. THE ILL-DISPOSED PRESSURES OF THE NRC ELEMENT 

In Reference 29 the term ‘spurious mode’ is applied to the pressures cheTh which satisfy 

IQchV.vhdQ = 0, VvheSh 

and differ from a constant ‘hydrostatic mode’ which occurs in some problems. These ch have also 
been referred to as  chessboard^'^^ or ‘chequerboards’ owing to their geometric pattern. We prefer 
to refer to these modes as ‘ill-disposed’ following Reference 31 -without the negative connotation 
which has become attached to such ch. In Reference 3 1 it is argued that ill-disposed modes play no 
role in determining natural or physical modes; likewise they may lead to inconsistent algebraic 
systems. But, alternatively, each ill-disposed mode has a dual velocity mode which is weakly 
incompressible. A prime example of this simple algebraic consequence of ill-disposed pressures is 
provided by the NRC element. 

A simple count of unconstrained degrees of freedom15 for the NRC element according to 

Nudof = dim Sh - dim Th (20) 
on sequences of regular meshes leads to the conclusion that the NRC is grossly overconstrained- 
as are other arrangements of linear  triangle^.^, Let Uh c Th be the subspace satisfying equation 
(19) of ill-disposed modes and possibly the hydrostatic mode. What the algebraic argument of 
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Reference 31 is saying is that a careful constraint count gives 

Nudof = dim Sh - dim Th + dim U h  (21) 
Mercier4 recognized that dim U h  was significant for the NRC. Given vhsSh, consider a typical NRC 
macro in any mesh, and let e,, e2, e3, e4 denote the four subtriangles, ordered as in Figure 1. Mercier 
proved that 

Mercier then argues that for Th as we have chosen, only three of the four incompressibility 
constraints are independent, since setting V.vh = 0 on three triangles forces it to be zero on the 
fourth. 

This argument which shows that the NRC is not overconstrained can be turned around to show 
that the NRC also has many ill-disposed modes. Consider again our typical macro, labelled M ,  and 
define 

V.vhle, - V,vh/e2 - V.vhle, + V.vh/e4 = 0. (22) 

(23) 
~ { 2k l/ael, on triangleei[+,i=1,4and - , i=2,3]  

0, outside of macro A4 
where uec is the area of triangle ei. Now 

since c L  and V.vh are constant on triangles. But substituting equations (22) and (23) into equation 
(24) shows that c$ satisfies equation (19), thus CLE Uh. Note that there is one such ill-disposed mode 
for each macro. It is not hard to show that on regular rectangular meshes with boundary 
conditions which cause the bilinearlconstant-p element” to have a chequerboard mode, the NRC 
has a similar chequerboard mode satisfying equation (19), constant on each macro and alternating 
in sign between macros.32 We refer to this as the ‘global ill-disposed mode’ and those of equation 
(23) as ‘local ill-disposed modes’ for obvious reasons. 

What we have seen is an instance of a simple algebraic truth3’-redundant constraints and ill- 
disposed modes are one and the same. The NRC has a favourable constraint count only because it 
has ‘spurious pressure modes’. The global mode of the NRC can cause algebraic consistency 
problems related to inhomogeneous boundary  condition^.^^^^ This must be avoided the way it is 
with bilinear/constant-p rectangles. We shall now prove that the local ill-disposed modes cannot 
lead to inconsistency. 

Inhomogeneous boundary conditions are often imposed as described in Reference 20. S” is taken 
to be the trial space satisfying homogeneous boundary conditions wherever essential b.c. are 
specified. u t  is chosen to be zero at all mesh nodes except those which coincide with boundaries on 
which inhomogeneous essential b.c. are specified. At those nodes ut  interpolates to the 
inhomogeneous data. Thus uh = wh + u t  is sought with whrsSh determined by the Galerkin 
equation. Constraint equation (12) becomes 

qhV.whdQ = - qhV.t$dQ (25) I* j* 
Note that equations (12) and (25) have the following algebraic solvability condition.29331 There 

is a solution wheSh to equations (12) and (25) only if 

We have 
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Theorem 1 

Let c$ be a local ill-disposed mode of the NRC element, i.e. c k  is as in equation (23).  Then for ub 
as defined above, the solvability equation (26) is satisfied. 

Proox We note that the only reason equation (26) does not follow from equation (19) is that 
ut$Sh. Consider the larger space Sllz Sh of functions free on all boundaries: u h , ~ s .  Now observe 
that the argument of equation (24) applies equally well to all v h d h ,  since it involves only one 
macroelement and does not depend on the boundary conditions. QED 

Remark 1 . 1 .  The above argument does not apply to the global ill-disposed mode. As with the 
bilinearlconstant-p rectangle, the global mode occurs on some meshes because there is a ch which is 
orthogonal to V . S h  but not V.Sh.  

Remark 1.2. The local ill-disposed modes of the NRC are pieced together from ill-disposed 
modes of the element weak-gradient matrixjl and are not related to boundary conditions. 

Theorem 1 says that inhomogeneous boundary conditions cause no more difficulty for the NRC 
element than with the bilinearlconstant-p element. Boundary conditions chosen so that uk is such 
that equation (26) is satisfied for the global ill-disposed mode will avoid the pathologies described 
in Reference 29. This, however, is a long way from guaranteeing convergence of the NRC 
approximation, even in Stokes flow. We now turn our attention to that question. 

6. APPROXIMATION ERRORS USING THE NRC IN STOKES FLOW 

The ill-disposed pressures lead to a non-uniqueness of the pressure solution from the Lagrange 
multiplier method (A) for Stokes flow. This assumes that any algebraic inconsistency with the 
global mode has been avoided and results from the fact that if p t  is a solution, so is p t  + ch for 
ch€Uh.  The velocity solution is unique.29 The penalty method gives a unique pressure solution 
which tends to a representative pressure solution of the Lagrange multiplier method'' as ZH co. 
The question of convergence as the mesh is refined can be resolved by resolving the question for the 
Lagrange multiplier solutions (uh, p k ) ,  where 

la chpkdJ2 = 0, Vch€ U h  (27) 

which is unique. 

.. 

. . *  

. . . 

Figure 3. A regular, square, N,, x N,, mesh of NRC macroelements of diameter h 
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Figure 4. The ‘constant’ k ,  with N,, = 4, 8, 10, 12, 16 and 24. log x log slope confirms that kh z Ch 

To determine whether (uh, p k )  converges to the exact solution (u*, p * )  as the mesh is refined, we 

For qh orthogonal to Uh in L2(R): 
first consider a generalized LBB ~ o n d i t i o n : ’ , ~ ~ , ~ ~ ~ ~ ~  

where 11. / /  , denotes the energy norm3’ (we assume essential boundary conditions imply that the 
energy-norm is equivalent to the W1,’(Q) x W’>’(Q)-norm). /I. / /  denotes the L,(Q)-norm. The 
desired result for (uh, p t )  could be established if kh were bounded away from zero independent of h; 
unfortunately for many NRC meshes, it is not. 

Consider the meshes of Figure 3, in which one NRC is fit into each of the Nzs squares. As shown 
in Figure 4, a direct computation3’ on a sequence of such meshes shows that 

qheTh, q h l  Uh and whsSh 

tends to zero as O(h); k ,  as given in equation (29) is the best possible k, for equation (28). These 
numerical results have been recently confirmed by a proof that k, = O(h) on sequences of meshes of 
NRC elements pictured in Figure 3.32 The numerical procedure used in the calculation of Figure 4 
is, nevertheless, of great value, since it allows determination of k ,  on irregular meshes which defy 
analytic treatment.’ Thus it is not possible to make a general Brezzi-style estimate for (uh - u*, 
P L  - P*). 

6.1. Velocity estimates without the discrete LBB condition 

It will be convenient in what follows to use the energy inner 

U(U,V) = e.fd0 (30) 
I Q  

where di j  = We consider the 
subspace Wh c Sh of trial functions satisfying the incompressibility constraint equation (12) and 
define the operator 

+ u ~ , ~ )  and fij = f ( v i ,  $. vjJ for i , j  = 1,2. Thus I/ 3 I/ = 

Zh:H,t--+ Wh (31) 
which is the projection from the space H, onto W h  with respect to the energy norm. HI is a 
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subspace of W1,2(Q) x W'q2(Q) satisfying homogeneous essential boundary conditions on some or 
all of the boundary of Q. For admissible pressures in the Lagrange multiplier method we take 
H o  = L2(d2). The exact solution (u*, p*) satisfies the continuous analogue to (A) above: 

where (-,+)o denotes the L,(SZ) inner product. We assume that the domain, boundary conditions and 
FeL2(R) x L2(R) are such that u*EW~,~(SZ) x wk32(Q) for k 3 2 with u* unique, and p*cW2(Q)  for 
m 2 l .33 p* may not be unique when there is a hydrostatic mode,29 but hereafter we assume that in 
such cases p* is the unique representative pressure solution for which ( p * ,  l), = 0. We now prove 

Theorem 2 

If (u*, p*) is the solution to equation (32) and (uh, p:) is the finite element solution to the Lagrange 
multiplier method (A) in the Stokes flow case, 

/ /  uh - ZhU* I /  < c inf / I  qh - p* / I  
l?h€Th 

(33) 

where / I  * I/ is the norm induced by a(., .) and c is a constant independent of h. 

Prooj. Let qh = 0 in problem (A) and q = 0 in equation (32). Also in equation (32) let v = vh6Sh, 

LZ(U*, v*) - (p*, V . V * ) ~  =: (vh.F, l )o  
u(u~,  vh) - (ph, V.vh)o = (vh.F, 1)o 

Subtracting gives 

Now observe that U*E W h  so that Zhuh = uh, thus, letting vh = uh - zhu* and using the fact that 
Z,2 = zh and that Zh is self-adjoint in a(.;), implies 

a(uh - u*, v h )  = ( p h  - p", V.vh), 

a(uh - u*, U h  - zhu*) = a ( U h  - zhu*, U h  - zhu*) = ( p h  - p*, V' [Uh - Z h U * ] ) O  (34) 

We note that the right-hand side of equation (34) may not be zero since p* - ph$ Th, but it is small 
since we can let ph = best L,(SZ) approximation to p* and add zero to the right-hand side of 
equation (34) in the form of (ph, V.[uh - zhu*])o. Also (ph, V.[uh - zhu*])o = 0, which gives 

a ( U h  - Zhu*, Uh - zhu*) (ph  - p*,V'[uh - zhu*])O 6 c / /  p* - ph / / O  I /  U h  - zhu* / /  1 

The inequality follows from the boundedness of the weak divergence, whose operator norm gives 
c.33 Division by / /  uh - zhu* I /  gives the desired result. QED 

Remark 2.1. This result should be compared to the classical result for unconstrained problems, 
which shows that the finite element solution is the best energy approximation to the exact solution. 
Here the f.e.m. solution is as close to the best weakly imcompressible approximation to the exact 
solution as the pressures are accurate. 

Remark 2.2. Theorem 2 shows that the primary role of the Lagrange multiplier is to constrain 
the f.e.m. solution to be close to zhu". 

Remark 2.3. Only accuracy of the Lagrange multiplier space T h  is required, not the stability of 
the pressure approximation. 
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Theorem 2 is quite easily turned into an estimate for / /  uh - u* / /  which does not require the LBB 
condition: 

Theorem 3 

I/ U* - u* /I < /I u* - Zhu* / /  + cinfqXEp / / p *  - qk /I, 
Proof. Add and subtract u* and use the triangle inequality in Theorem 2. QED 

Remark 3.1. The idea of constraint counting'' was designed to give a heuristic idea of whether 
j /  u* - Zhu* / /  could be expected to be small based on an estimate of Nudof = dim Wh. 

Results similar to Theorem 3 have been established by others. We point out particularly the 
work of Mercier in Reference 34. He proves a result which differs from ours in the present 
application only in that he uses the standard norm on W'32(rR) x W'32(rR) rather than the energy 
norm. This gives different absolute constants in the estimate. Mercier also points out an interesting 
sharpening of our estimate which applies to the NRC element: 

Corollary 3.1 (Mercier) 

If the functions in W h  are weakly incompressible with respect to multipliers in H,, then 

/ /  Uh-U* 11 1 = / /  u* -zhu* / / I  

Proof. The right-hand side of equation (32) is  zero in this case, implying that the right-hand side 
in Theorem 2 is zero. QED 

Remark 3.2. The result applies to the NRC since weak incompressibility implies pointwise 
incompressibility which in turn implies incompressibility w.r.t. H, multipliers. 

The work of Mercier predates ours but seems to have received less attention than it deserves 
because emphasis has since been placed on ensuring the optimality of / /  u* - Z,u* / /  by choice of 
elements which satisfy the LBB condition. Satisfaction of the LBB condition guarantees that / /  u* 
- Zhu* jl is on the order of optimal approximation of strain-rates by Sh. This follows directly from 
the work of Brezzi." There are several ways which / /  u* - Zhu* / /  can be shown to be small when 
the LBB condition is not satisfied. The interested reader is referred to Reference 5. We focus here on 
another idea of M e r ~ i e r . ~ ~  

In Reference 34 a construction is sketched which is intended to show that there is a wh€ Wh with 

/I W h  - u* /I 1 < Ch I! u* 112 
on rectangular domain discretized by square elements. Since the transformation of one rectangular 
domain to another is infinitely differentiable, a simple change of variable would lead to the same 
conclusion for a rectangular domain with rectangular elements. The construction in Reference 34 
is very brief and contains a confusing misprint, and most important does not show how the 
construction can be carried out near no-slip boundaries. Consider any macroelement; the central 
node (node 3 in Figure 1(A)) is completely specified by the requirement that V.wh = 0. In fact for a 
rectangular element, it is easy to deduce that if wh = [uh, uhIT,  

~3 = $ ( ~ 1  + 244 + 01 -- ~ 4 ) = 3 ( ~ 2  + U S  - 02 + U S )  

(35) 3 -1 - 2(u1 -u2 + u l  f VZ)=g-u4 + + 04 f us)  
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where [ui, u i l T  is the ith nodal value of wh in the numbering of Figure 1. Thus if two adjacent nodes 
have zero velocity, the flow at node 3 must be parallel to the still boundary. If three nodes have zero 
velocity, the central node must also have zero velocity. It is not hard to see that Mercier's 
construction as given in Reference 34 does not satisfy these constraints, nor does it appear to us 
that there is a simple way to modify the construction appropriately so that it does. 

The constraints implied by equations (35) are physically reasonable. The implication is that the 
triangles with two nodes on a no-slip wall must be in simple shear to satisfy the continuity equation. 
If one of the nodes in such a triangle is at a corner, and thus on two walls, the shear-flow must 
actually be still. The central nodes of wall elements are thus in a shearing boundary-layer and have 
correspondingly simple flows. This points out an important fact about the NRC element: 
equations (35) show that the central node is not really a degree of freedom in incompressible flows, 
rather it provides unknowns which are 'used up' in satisfying the continuity equation. 

Mercier's construction appears to be correct if no b.c. are imposed. It can be modified to make wh 
incompressible quite easily, but this seems to require the sacrifice of approximation accuracy. The 
best analytical result we have is that if u* has three square integrable derivatives then on simple 
meshes of the type considered here, / I  wh - u* I/ d Ch / I  u* / I  3.32  The extra smoothness required of u* 
seems to be needed only for the proof technique, however, and numerical experiments suggest that 
the result of Reference 34 holds even with no-slip b.c., only requiring u * E W ~ , ~ ( Q )  x W232(Q). 

6.2. Pressure estimates without the discrete LBB condition 

Let us assume that velocity estimates along the lines of the previous subsection have been 
obtained. Subtracting discrete and continuous weak equations as in the proof of Theorem 2 gives 
for all v h d h  

a(uh - u*, vh) = ( p k  - p*, VTh), = (p: - p h  + p h  - p*,  V-Vh), 

( p h  - p", V.vh), = (ph - p*, V.vh), - a(uh - u*, vh) 

where, as before, ph is the best L2(Q) approximation to p* from Th. Thus 

(36) 
Under usual assumptions of approximation accuracy, it suffices to show that I/ p k  - p" / /  , is small. 
This does not immediately follow from equation (36) even though the right-hand side is small when 
/I vh / /  = 1. (The right-hand side is indeed small because / /  uh - u* / I  and / /  ph - p* / /  , are small.) The 
problem is twofold: first, p: - ph may have a component in Uh. The smallness of the right-hand side 
might then only show that this component is substantial, not that /I p k  - ph / l o  is small. In 
Reference 5 this problem is addressed. There it is shown that with some reasonable assumptions 
there is an approximation p h E [ U h ] L  n Th such that /I p" - ph / l o  is as small as the maximum of / /  u'; 
- u* / /  and / /  pk - p* / /  where u: is the nodal interpolate to u*. Thus proving that /I pk - p h  / /  is 
small will suffice to produce a pressure estimate. Furthermore, since (ph - gh, V.vh), = 0 for all 
vheSh, p h  can be substituted for ph  in equation (36). 

Secondly, since the constant kh of equation (29) can evidently only be bounded by kh > C,h on 
many meshes, the best that follows from equation (36) by taking the supremum of both sides with 
I/ vh / /  = 1 is 

1 
llpk - ~ h l l o  <c,hcc2 I/ U h -  u* I/ 1 + c, lip" - P* /lo1 (37) 

/ /  ph - p* I/, is usually d Ch / /  p* / /  We believe that / /  uh - u* /I < Ch / /  u* / /  as discussed earlier. The 
best that equation (37) gives then is that / /  p: - pk / l o  is bounded. 
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In Reference 5, it is shown that if one is willing to accept the ‘dual norm’ 

/ / ~ k - D h / / - l  = SUP dPk-Dh)dQ 
I ld  I = 1 b 

an estimate can be obtained for / I  p k  - P h  /I - whose dominant term is no worse than Ch /I p k  
- Bh \ l o ,  which is then O(h). This estimate may not be of practical value, but it does suggest that p k  is 
not meaningless, and indeed does contain valuable information. The rationale for recovering 
smoothed approximations to p k  which converge at an optimal rate will be discussed below. It is 
interesting to note that in a class of test problems described in Reference 5, optimal convergence 
rates are observed for / I  p i  - p* I / o .  A typical example employing the NRC element is pictured in 
Figure 5. The problem is of the form 

V2u - Vp = F on (0,2) x (0,2) = SZ 
u = 0 on boundary [(O, 2) x (0,2)] = r (38) 

F is chosen so that the exact u* and p* are in W2.2(SZ) x Wz,2(sZ) and W’*2(SZ), respectively, but not 
in W332(sZ) x W3,2(sZ) and W232(Q). The domain is discretized with square NRC elements, and thus 
we have meshes of the type used in Figure 4. Thus k ,  is surely tending to zero at a rate which would, 
by our above analysis, imply that ( I  p k  - p* is only bounded. On the other hand, curve (a) of 
Figure 5 shows that I /  p k  - p* I /  tends to zero at O(h)+, and according to equation (36), it does 
suggest that I/ uh - u* 11 d Ch ) I  u* /I also. 

As is discussed in Reference 5, examples can be constructed in which I /  p k  - p* I /  appears to be 
either non-convergent or affected by oscillatory pressures. But all such cases of which we are aware 
seem to have singularities in the strain-rates of the exact solution (and probably the pressure). In 
such cases, an ad hoc analysis of the singularity is required to get precise estimates, but the 
frequency of appearance of such singularities in problems of physical importance argues that some 
post-processing of the ‘raw’ pressure, p:,, is always wise. This even if it does eventually prove that 
I /  p k  - p* is convergent in problems where standard smoothness assumptions hold.5 For now, at 

I 
Figure 5. Convergence rate achieved by raw penalty pressures (a), macro-averaged (b), and (c) projected onto the 

conforming bilinears. NRC elements with N,, = 4, 8, 16, 20 and 24. Stokes problem with minimally smooth (u*,p*) 

f Actually, we use a penalty approximation to pt, but since z = 0(1O6), and the errors in question are orders of magnitude 
larger than l/z, there is no doubt that this conclusion applies to p: itself. 
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least, the post-processing to which we turn our attention is required to get estimates even for these 
smoother problems. 

6.2.1. Pressure smoothing. A rationale for the post-processing of the pressures can be presented 
which applies the ideas of Reference 27 to the methods of Reference 20. The latter were designed to 
smooth oscillatory pressures which sometimes appear in f.e.m. solutions to the Navier-Stokes 
equations. The idea is to find an auxiliary pressure trial space, Vh, such that L2(!2) projection from 
Th to Vh smooths out the spurious oscillations in p:. Since such projection must also nullify all of 
U h  which is orthogonal to constants, it therefore suffices to smooth any pressure solution, ph, to the 
Lagrange multiplier method (A), not necessarily p t .  The rationale is that if V h  is chosen to be able to 
approximate p* well, and if Th and Vh satisfy a ‘posterior LBB condition’ with respect to a 
seminorm defined using the orthoprojection 

rh:L2(!2) * Vh 

then an estimate for j h  = rhph can be obtained in the L,(Q)-n~rm.~ 
The posterior LBB condition is hard to prove. In Reference 27 a proof for bilinearlconstant-p 

rectangles with V k  constructed on macro-elements is given. In Reference 32, this result is 
generalized to the NRC element, but the choice of V h  is computationally inconvenient. 
Unfortunately we know of no rigorous proof of the posterior LBB condition for the choice of V h  
given below. In fact, experience seems to suggest that the scheme does not completely nullify non- 
constant members of Uh, and thus it cannot satisfy the posterior LBB condition. The posterior LBB 
condition does show us that there are at least some smoothing schemes which are rigorously 
guaranteed to work, if inconvenient. We rely on computational experience to give us confidence 
with other schemes. 

From a practical standpoint, pressure smoothing of the projection variety is easy to implement: 
the nodal-values of ph are given by 

where M is the ‘mass matrix’ of Vh and [Bin the nodal basis of Vh. If M is ‘lumped’,35 then the 
computation involved in equation (39) is no more costly than computation of a load vector. For the 
NRC element we make the same choice for V h  as chosen in Reference 20 for bilinearlconstant-p 
elements: we use the conforming bilinear elements based on the corner nodes of each macro. This 
produces a continuous pressure field referred to velocity nodes. We use the centroidal one-point 
formula in each triangle to evaluate the contribution from each macro to equation (39). 

In Reference 20, it is pointed out that there may be modifications which will improve ph at 
boundary nodes. This is particularly needed at unshared corner nodes when ph is ‘chequer- 
boarded’. (This is the experience which suggests that this choice of Vh does not lead to satisfaction 
of the posterior LBB condition.) Trouble with unshared nodes is nevertheless consistent with 
convergence of the projected pressures, because even though Vh is a conforming space, convergence 
is only in L,(O), and the pointwise values at  nodes need not converge. We have not implemented 
any modification procedure, but rather prefer to apply a cautious interpretation to our results at 
boundary nodes. In Reference 20, it is argued that the value of unmodified Ph at non-corner 
boundary nodes, shared between two elements on a straight boundary, is actually a better 
approximation top* half an element width into the flow than at the boundary. This analysis applies 
to projection of piecewise constant pressures onto the bilinears, but since we find that in each 
macro the pressure varies little from triangle to triangle, the result evidently applies to the NRC in 
such cases as well. We compute average values of kZJ and aii in each macro, and for the boundary- 
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layer elements nearest walls, associated the values of with these average quantities. We disregard 
the value of $' at domain corner nodes entirely. 

In Figure 5 we illustrate the effect of applying the pressure smoothing scheme to the test problem 
of equation (38). Since the raw pressure p k  converges at an optimal rate without projection, this 
does not provide a good test of the smoothing. But curve (c) of Figure 5 does illustrate an 
interesting-and unexplained-phenomenon. The convergence rate of the smoothed pressures is 
O(h3") as opposed to the O(h) observed in p k .  In this test problem, we can see with certainty that 
the convergence rate has not been slowed down by our projection method. To provide a more 
critical test, we must turn our attention to problems in which the exact solution is not known. 

7. NUMERICAL SOLUTION OF THE HOLE-PRESSURE THEOREM 

The hole-pressure problem in the plane-flow case seems to be an ideal testing ground for the 
techniques presented here. The problem involves flow over a transverse slot, beginning and ending 
in plane Poiseuille flow as a far-field solution. As is illustrated in Figure 6, the flow is assumed to 
start from and return to channel flow at finite distances up- and down-stream of the slot. In the 
non-Newtonian case, the particle histories are known analytically outside the prescribed domain.' 
This problem has been treated numerically by several  author^;*,^^-^* there are analytical 
 prediction^^,^^ and experimental observations about aspects of such and, finally, for low 
Reynolds number Newtonian flows, degree of smoothness of the exact solution can be predicted 
with some pre~ision.~' 

7.1. Pressure differences over a slot 

The difference between the total thrust on the wall at the top and bottom of a slot such as 
pictured in Figure 6 varies as a function of material properties of the fluid and Reynolds number. 

i 
2a 

A 

b -  

Figure 6. The cross-section of a plane channel with a deep transverse slot. P ,  and P ,  mark the locations of pressure 
transducers. Undisturbed channel-flow is imposed at inflow and outflow 



60 B. BERNSTEIN, D. S. MALKUS AND E. T. OLSEN 

Here we consider shear-ratelhole-based Reynolds number,41 RL(s), and the more usual average 
velocity/channel width-based Reynolds number, Re: 

where p is the mass-density, 2a the channel width, U the average velocity in undisturbed flow, y(S) 
the viscosity as a function of S, the wall shear-rate in undisturbed flow, and b the width of the slot. In 
Newtonian flow y(S) = y(0) and 

4a  
ReIR, = - - 

3b 

but in non-Newtonian flows R, can be dramatically larger than Re because of shear-thinning. 
We define the pressure difference, P*, as the difference between the normal stresses acting on the 

wall, at the indicated locations in Figure 6. 

P * = P ,  -P2 (42) 
where lPil = lo& - P I ,  and n is the normal direction to the wall. The sign of Pi is chosen to be 
positive if the resulting force acts away from the interior of R. If we take Cartesian co-ordinate axes 
aligned so that the x,-direction is the direction of undisturbed flow and the x2-direction is the 
orthogonal axis in the plane of the flow, the wall shear-stress, a, and first normal stress difference, 
N, ,  are defined using the following stresses at the wall: 

In undisturbed channel flow of a Newtonian fluid N ,  z 0, and in Stokes flow over a slot P* = 0. 
Our purpose is to investigate the dependencies between N1,S,o, RL(S) and P*. In more detail, 
we focus on two hypothesis: 

I. For Newtonian fluids at low RL(S): 

P* z coRL(S) 

11. For non-Newtonian fluids at zero RL(S): 

P* N,=2- 
d In P* 
d lna  

As to Hypothesis I, a value of c z - 0.033 is observed by others in numerical  experiment^.^^ 
Hypothesis I1 is known as the Higashitani-Pritchard-Baird eq~at ion .~ ' .~ '  Its derivation requires 
an assumption of flow symmetry about the centreline of the slot. We will show that for the 
Newtonian and Curtiss-Bird models employing the NRC element as we have proposed, we obtain 
a value of c close to the accepted value. We will show that if Hypothesis I1 is carefully interpreted, 
our results are in good agreement with its prediction in the range 0 < N,/o 6 0.6. But a systematic 
bias is observed in the range 0.6 < N,/o d 1.3. We believe we can explain this bias in terms of the 
fluid model, and thus suggest that it does not lead to any adverse inferences concerning the 
numerical methods employed. Before addressing the comparison of our results with Hypotheses I 
and 11, however, we briefly dispose of issues which might be expected to affect the comparison. 
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7.2. Some technical preliminaries 

7.2.1. The corner singularity. Following Reference 40, it is possible to estimate the order of the 
singularity at the corners of the mouth of the slot. The result applies to Newtonian fluids with 
inertial terms in a sufficiently small neighbourhood of the corner. Using the analysis of 
Reference 40, we deduce that for any E > 0 

u*EcH1'5445 - &  (Q)I2 
P*EH0'5445 - "Q) 

where HS(Q) = Ws3'(Q). Thus the singularity is very slightly weaker than that induced by an elastic 
plane crack (360" corner). We use no special treatment of the singularity, and therefore may expect 
to lose nearly half a power of h.43 In the nowNewtonian case, the nature of the singularity is less 
clear, though there are some fluids which exhibit the same order singularity given above.44 Unlike 
the stream-function/vorticity finite difference  method^,^^,^^ the finite element method allows the 
singularity to be entirely ignored, and that is the course we have followed in the results presented 
here. 

7.2.2. Results with pressure smoothing. As is described in Reference 5, all solutions to the hole- 
pressure problem produce pressure fields with oscillatory pressures when the NRC is employed as 
described above. A typical mesh of square elements is illustrated in Figure 7 ,  with the alternating 
light and dark squares indicating a chequerboard-like pattern of high and low pressures from 
macro to macro. Since the computed pressures are penalty approximations to p:, this cannot be a 
matter of superposition of components of Uh on p:.31 We suspect that this pattern is a 
manifestation of the fact k,  tends to zero as the mesh is refined. Unlike the test problems with 
smoother data, the pressure smoothing has a dramatic effect in restoring a smooth pressure 

Figure 7. Regular mesh of 352 NRC macros for the hole pressure problem. Alternating white and black squares indicate 
observed pattern of high and low pressures in macro-averaged raw pressures 
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distribution, with the expected linear variation ofpressure in the far ends of the channel, away from 
the disturbance. It is demonstrated in Reference 5 that the pressure smoothing allows an accurate 
determination of a reasonable value of c in Hypothesis I above, where it would be impossible to do 
so using the raw ph. All of the results presented below employ pressures smoothed by the method 
described in Section 6.2.1. 

7.2.3. Computation of wall shear-stress: spatial reference points. It  is common experimental 
practice to measure CT, the wall shear-stress, by a physical measurement of the pressure gradient, 
k.41 This can be accomplished by placing pressure transducers on wall in undisturbed flow 
separated by a distance L. We then have 

B = ka (44) 
where 2a is the width of the channel. This is a direct consequence of the equations of motion for 
plane Poiseuille flow. If the transducers are placed on opposite sides of the slot at a distance of L/2 
from the centre line of the slot, it follows that the effect of the increased pressure drop due to the 
disturbance over the slot is O(L-'). 

Attempting to compute B by computing Ap/L in the finite element model produces an apparent 
anomaly. We consider plane Poiseuille flow without a slot. For a regular rectangular grid of NRC 
elements, we can argue that computation of B via equation (44) will produce the exact wall shear 
stress of a Newtonian fluid with a given centreline velocity. But the finite element solution will 
produce a wall shear-stress, oh, in the element closest to the wall with oh < B. The value of dh can be 
interpreted as a central difference approximation to CT at the middle of the elements closest to the 
wall. The difference between ch and B can be significant for cruder meshes, as shown in Table I. In 
the present study, ch, the finite element wall shear-stress in undisturbed flow, was taken to be the 
value given in the macro on the inflow boundary, at the wall opposite the slot. One may also deduce 
that in plane Poiseuille flow, the smoothed pressure, ph,  at the wall nodes is most accurate when 
referred to the element midline, because it also is a central difference approximation at the 
midline.20 We will also consider a wall shear-stress, cr?, obtained by averaging the wall shear-stress 
in the macros at the wall, straddling the centreline of the hole. This B? is referred to the intersection 
of the midline of these elements with the centreline of the hole. Thus, for reasons inherent in our 
methods, all computed quantities P*, bh, and B: are referred to a line half an element width in from 
the wall, but B is referred to the wall. 

Table 1. Estimates of the constant c of Hypothesis I, using o, oh, and cr;. The 
first three cases computed with the NRC element; (*) computed by FIDFIP~~ 
using 124 biquadratic elements and pure linear pressures; (**) computed by 
FIDAP using 124 biquadratic elements with four-point reduced/selective 
integration.I4 Note: For both FIDAP elements the wall shear-stress is 

exactly ci 

2aJb Rl. c = P*JReo c = P* JReci, c = P* JReo: 
_____ 
1.0 1.0 - 0.033 - 0.038 - 0.044 
2.0 010 - 0027 - 0.03 1 - 0.03 1 
2.0 1.00 - 0.028 - 0.03 1 - 0.03 1 
2@* 1.00 - 0.034 - 0.034 
2.0** 1.00 - 0.033 - 0.033 - 

._ - 
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7.3. Newtonian pressure d@erences 

For most of our computations we have used the mesh of 352 square NRC elements pictured in 
Figure 7. The width of the channel is 2a = 1, the width of the hole is b = 1, and the depth of the hole 
is d = 2. Fully developed plane Poiseuille flow is assumed upstream and downstream from the 
boundaries of the domain pictured in Figure 7. To measure k in equation (44), pressures are taken 
at nodes at  the bottom of the channel, one row of nodes in from the inflow and outflow. These nodes 
are separated by L= 3.25. We have only eight elements across the stream, and so typically we have 
((r - ( rh)  % 0.125. Note that this is exactly the mesh spacing, and thus this amount of error in (rh is 
just what can be expected for errors in stresses using linear elements. We cite some computations 
with a mesh which has a smaller slot and more rows of elements (16 vs. 10) outside the hole. There 
are still eight elements in the slot and across the stream. The dimensions are 2a = 1, b = 05, d = 2 
and L= 4.275. Elements in the slot are half the width of elements outside the slot. 

To simulate the effect of a transducer, the pressure difference P* was computed by averaging the 
three values of pressure given at the three wall nodes opposite the hole, centred on the hole (nearest 
PI). The weighting 1/4, 112, 114 was used. It was found that the value thus obtained did not differ 
substantially from the point value of the pressure at the node on the centreline, for the low 
Reynolds numbers considered in this subsection. Near P,, the pressure was found to be so nearly 
constant that no averaging was employed. 

Our major finding in this subsection is that (r: < ( rh  to an extent which can significantly bias the 
determination of the constant c = P*/R,a, in Hypothesis I when 2a/b is as small as 1. This is due to 
the effect of the disturbance at the opposing wall in the channel flow, induced by the hole. Making 
2albl-2 makes the difference between 0: and (rh negligible by removing the source of the 
disturbance far enough from the opposing wall. Our results are summarized in Table I. The results 
of Table I also show that to produce an accurate value of c, care needs to be taken to use values of 
P* and oh, which for the technical reasons given above, are referred to the same spatial location. 
The difference between (r: and (rh does not appear to be technical, but rather strongly suggests that 
there is a significant difference between wall shear-stress over the hole and wall shear-stress in fully 
developed flow in real fluids. We believe that c = - 0.031 is our best value for the constant of 
Hypothesis I and is in good agreement with the value of c % - 0.033 obtained by others.41 

7.4. Non-Newtonian ,fluids 

Our computations were carried out using the constitutive equation ( 3 )  with Td = 1.82378, 
E = 0.08 and po = 1. As a measure of the non-Newtonian non-linearity we consider three non- 
dimensional numbers which are commonly used, De = ST,, Lo = N,/o and We = TdU/2a, where S 
is wall shear-rate, (r wall shear-stress, N wall first normal-stress difference, U average velocity 
across the channel of width 2a. All values are taken in undisturbed Poiseuille flow. As S t t  0, the first 
two numbers are asymptotically equal. We is asymptotically 116 the value of De. In typical 
computations these numbers are close in value and at  the highest shear-rates De > Lo > 6We. Our 
computations fall in the range: 

0 < De < 2.60 
0 < Lo < 2.40 
0 < 6 We < 2-28 

We base these numbers on (r,,, S, (the corresponding f.e.m. wall shear-rate) and N,, ,  the f.e.m. first 
normal-stress difference-all taken in undisturbed flow. It will be useful to consider corresponding 
quantities (r:, S:, and N:,, taken at the centreline of the slot. 
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We picture our computations as applying to two different fluids with density p = 1. 

Fluid F,: polymer melt 

Td = 1.82378 
& = 0.08 

I.lo = 104 
In the range 0 d S d 0-93 

Fluid F,: polymer solution 

Td = 0.45 
E = 0.08 

P o = 1  
In the range 0 < 9 < 5.78 

The parameters were not actually varied in the computations, but amount to two interpretations of 
the same ST,. For F ,  in the attainable range of solutions, Re and RL(S) are negligible, so we picture 
our results at zero Reynolds number, which test Hypothesis 11, as begin flows of fluid F,. In this 
case stresses should be scaled up by a factor of lo4. 

To obtain qualitative comparisons with the pictures of flows of polymer solutions in 
Reference 38, and to make physical sense of Reynolds numbers of the order of 1 to 32, fluid F ,  is a 
more appropriate interpretation. Computed stresses are scaled correctly for fluid F,, but the 
computed strain-rates should be scaled up by a factor of about 4.05. We are well aware that Curtiss 
and Bird intended their model to apply to undiluted polymers, and fluid F,  may be unrealistic. 
Comparison with the fluids modelled and observed in Reference 38 suggests that our fluid F,  
shear-thins much more drastically than actual polymer solutions. This may be artificial, but 
interesting nevertheless, becasue it magnifies inertial effects at fixed De. 

7.4.1. Non-Newtonian pressure dgferences. A careful interpretation of Reference 39 shows that 
Hypothesis TI should be viewed as applying to P*, NOh, and oi,  that is to quantities measured on the 
centreline of the slot. Our studies in this regard were performed for creeping flow in which 
computationally p = 0. We took flows of fluid F ,  with various centreline velocities specified to 
produce the elastic part of the pressure difference, P,, is the whole of P*. 

It is convenient to consider the integral form of Hypothesis 11: 

Implicit in the assumptions required to make Hypothesis I1 valid is that equation (45) can be 
evaluated using N and z taken at the wall opposing the slot in a sequence of experiments and that 
the result will be the same as if the values had been taken in a single experiment between a point at 
which z = 0 and the wall,7 where z = cr. For the reasons given above, in our numerical tests the 
value for cr used in equation (45) is actually 0;. 

In Figures 8 and 9, we summarize a test of Hypothesis 11. We plotted N?,/o,O as a function of oh” 
for all of our computations with fluid F,,  using a channel with 2a/b = 1, 1.5 and 2 (obtained by 
changing 2a appropriately on our 352 element mesh). These data produced a master curve of 
Ny,/o,O with all points appearing to fall on the same curve in Figure 8. Integrating under the curve 
of Figure 8 by the composite trapezoidal rule gives the curve in Figure 9, which predicts P, based 
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t ::1 

0.1 0.2 0.3 0.4 0.5 

a- 

Figure 8. N:,/gt  (measured over slot) as a function of CT: in flows over slot with undisturbed flows at Re < 1.7 

1.25- 

0.5- 

0.1 0.2 0.3 0.4 0.5 

Figure 9. The HPB prediction (solid curve) versus actual calculated pressure differences over the slot, P,, (dotted curve). 
Prediction is based on the data of Figure 8; P,, is computed directly from the f.e.m. stresses 

on N:h and the interpretation of equation (45) in which the integrand can be taken from wall values 
of the relevant quantities in a sequence of experiments. We note that the actual values of P, taken 
from the f.e.m. model are in good agreement with the prediction of Hypothesis 11, only in the range 
0 < N:$a,O < 0.6(0 < G,O < 0.18 x lo4). In the rest of the range 0.6 < N: JOE < 1.28, the agreement 
deteriorates to about a 20 per cent deviation of the f.e.m. prediction from the prediction of 
Hypothesis 11. Since we have earlier observed about a 125 per cent error in stresses, and since the 
prediction of Hypothesis I was met with such accuracy, we tend to believe that the 20 per cent error 
here is physically significant. 

We believe that there is an explanation for this lack of agreement based on the fluid model, not 
the numerical model. Figure 10 plots two streamlines, the separating streamline and a nearby 
vortex streamline at Nyh/a; = 1.28. There is clearly visible asymmetry of a nature characteristic of 
flows of elastic This is in violation of the assumptions underlying Hypothesis 11. This 
asymmetry perhaps could explain the deviation at Nyh/5f  = 1.28, but it evidently does not explain 
the deviation of about 23 per cent from the prediction of Hypothesis I1 observed at N?h/GE = 0.73. 



66 B. BERNSTEIN, D. S. MALKUS AND E. T. OLSEN 

Figure 10. Flow from right to left over a transverse slot with De = 1.03 and Re = 0. Shown are scparating streamline and 
nearby streamline in the vortex 

Inspection of the results shows much less asymmetry in that case, but, if anything, a poorer 
agreement with Hypothesis 11. Rather, we propose that a necessary supposition for Hypothesis I1 
to hold is that the function N,/cr, measured at the wall in a sequence of experiments must be the 
same function of cr as N,/z  is of z, in any single experiment. In the latter case z = z(x) varies from z(0) 
= 0 at the channel centreline to z(a) = cr, at the wall. But direct inspection of the numerical results 
shows that this is not the case, with the difference between the two functions becoming pronounced 
at Nyh/o,O = 0.73. This happens even with quite symmetrical streamline, because N$/afl is 
measured in a shearing flow with a shearing history. N,/z  on the centreline may be taken in a 
shearing flow, but because of the disturbance induced by the hole, the history is not one of simple 
shear. A more detailed study of this may be found in References 8 and 46. 

We believe that we have identified two possible sources of bias in Hypothesis IT as applied to 
measurements of N , ,  and both can be traced to the disturbance induced by the hole. First, N(: and 
cro must be compared, rather than the more convenient N ,  and cr, or else slots with 2a/b > 1 must be 
employed; 2a/b > 2 was found to be sufficient. Secondly, the effect of the disturbance over the hole 
perturbs the centreline particle histories enough to significantly violate the symmetry and shearing 
history assumptions behind Hypothesis 11 when long-range memory of the fluid is significant. 

These results are at odds with the results reported in Reference 41 for pressure differences over 
circular holes. Perhaps these holes produce a relatively smaller disturbance than a slot. Using holes 
may be a viable alternative to slots if future laboratory experiments bear out our numerical 
experiments. But using holes still may not cure the bias, because the differential form of Hypothesis 
I1 seems to require for its derivation that N, / z  be the same function of z between each pair of 
maxima and minima of z along the centreline from the channel wall to the hole This 
may be significantly violated because of differing particle histories along the centreline-even with 
holes. The best alternative may be to carefully co-ordinate numerical and laboratory experiment 
and compute a calibration curve which corrects for both sources of bias identified above. 

7.4.2. Qualitative observations on elasticity and inertia. One of the interesting conclusions of the 
experimental and numerical studies in Reference 38 is that, in some ways, the effects of inertia and 
elasticity oppose each other in flows over transverse slots. In the following discussion we refer to 
flow-visualizations from Reference 38 but do not reproduce those photographs here. In Figure 10 
we see that the separating streamline in non-Newtonian flow has been deformed so that a line 
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normal to it tills upstream, and correspondingly, the vortex is distended with its highest point on 
the downstream side. For inertially dominated flows the effect is quite the opposite, as illustrated 
for the Newtonian flow at Re = 20.0 of Figure 11. Those observations are in qualitative agreement 
with the results of Reference 38. The numerical results computed with finite differences presented in 
Reference 38. 

At high De, there are similarities and differences between our results and those of Reference 38. 
Figure 12 shows the separating streamline and a streamline on the vortex for fluid F ,  at 
6We = 2.28, Re = 3.0. We find here a combined effect of elasticity and inertia. As appears to be 
characteristic of flows of elastic fluids over slots,38 the separating streamline is depressed further 
into the hole than in for a Newtonian fluid. Figure 12 involves a channel with 2a/b = 0.5, which is 
the case in Reference 38. Our Newtonian, Re = 0.0 results show that the deepest penetration of the 
separating streamline into the slot is 0.4b. But in the non-Newtonian case of Figure 12, the deepest 
penetration is 0.5b. In Reference 38, numerical results are presented for Re = 3.0 and 6.0 at this 
same We. The numerical results of Reference 38 show the deepest penetration to be about 0 %  for 

~ 

Figure 11. Flow over a transverse slot similar to Figure 10, but with De = 0 and Re = 20.0 

t 1 
Figure 12. Flow over a transverse slot similar to Figure 10, but with De = 2.60, Re = 3.0, and R ,  = 31.7 
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both values of Re. The experimental results seem to put the deepest penetration between 0.5 and 
06b, at Re = 3.0, but it is hard to measure the photograph with precision. 

The numerical results given in Reference 38 are with an Oldroyd fluid model. The authors do not 
give S for their computations, but in our computations at this De, we find that S = 6+834U/2a. From 
the given values of other parameters and W e  in Reference 38, we estimate that S is no larger than 7 
in their calculations. If this estimate is anywhere near correct, we can see that the Oldroyd fluid has 
thinned only a small amount compared to our Curtiss-Bird model, which has thinned to less than 
a third of its zero-shear viscosity at the wall in undisturbed flow. We believe that what we are seeing 
in Figure 12 is a streamline depression into the slot which is characteristic of non-Newtonian flows 
and a streamline tilt characteristic of inertially dominated flows. If our estimates of S for the flows of 
Reference 38 do not grossly underestimate S, the value of RL(S) are lower there than the value 
RJS) = 31.7 that we calculate for Figure 12. This, we believe, explains why the streamlines of the 
numerical model in Reference 38 show little if any tilt, whereas ours definitely tilt towards the 
‘inertial side’. We speculate that the reason the experimental vortex in Reference 38 shows a tilt 
towards the elastic side is that the experimental fluid has thinned even less than either numerical 
model. 

It is interesting to note that, along with the inertial tilt of the vortex in Figure 12, P* is negative. 
We can be confident that if this flow had Re = 0, we would have P* = P, > 0, and that the vortex 
would be on the ‘elastic side’ of the slot. Our results combined with Reference 38 strongly suggest 
that as RL(S) varies at fixed W e ,  the depression of the separating streamline into the slot remains 
relatively fixed, but the vortex moves from elastic to inertial side with attendant change in the sign 
of P*. Thus we see that elastic and inertial effects do not oppose each other in the sense of rendering 
the resultant flow apparently Newtonian, but superpose to make a flow which has indentifiable 
characteristics of each source of non-linearity. 

8. CONCLUSIONS 

We believe that the NRC crossed triangle element is an ideal element for steady flows of memory 
fluids. The rigorous analysis of numerical methods for non-Newtonian flows is in its infancy, and 
the error analysis of finite elements which fail the discrete LBB condition in Newtonian flows does 
not provide as complete picture as could be desired. Nevertheless, we believe that the theoretical 
results for linear problems given here provide a logical scenario, explaining why such elements can 
give convergent approximations when employed with care. Even though we have not proved that 
the NRC element requires only two L, derivatives of the exact solution to obtain an optimal 
convergence rate, we believe, based on our numerical experiments, that the result is true. 

The advantages provided by exact incompressibility of Lagrange multiplier f.e.m. solutions, and 
the attendant existence of stream and drift functions have been shown to be of fundamental 
importance to implementation of our numerical procedures for memory fluids. The fact that the 
NRC has constant gradients on each triangle has been shown to be vital in the analytic 
determination of particle paths and transit times. The several advantages just mentioned make the 
NRC element completely unique among finite elements for plane and axisymmetric incompressible 
flows. We believe that this uniqueness is ample justification for putting up with the added 
computational cost of the internal macro node. The internal node has been shown to provide 
dependent degrees of freedom which aid in the attaining of exact incompressibility. When these 
degrees of freedom are constrained by nearby boundaries, we have seen that the result is a simple 
shearing flow appropriate to a viscous boundary layer. 

Because there are some theoretical questions unanswered, we have dwelled at some length on 
numerical results. At low Reynolds numbers, we have found that surprising agreement with 
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accepted results41 for P* measurements can be obtained with 350 to 450 macros-this in spite of 
the fact that we use no special treatment of the corner singularities which have caused concern for 
finite difference practitioners.38342344 We have seen that pressure solutions using the NRC element 
can indeed be severely affected by ‘generalized’ chequerboard p h e n ~ m e n a . ~ * ~ ~  The numerical 
results presented here suggest that the proposed pressure-smoothing method cures this apparent 
pathology and is easy to implement. 

At higher Reynolds number and at any non-zero De, there is little in the way of error analysis to 
fall back on. We have seen that at Re = 20.0, the numerical results show significant inertial effects 
and that there is good qualitative agreement between our results and published numerical and 
experimental results.38 For non-Newtonian fluids, our results with the Curtiss-Bird model agree 
well with published experimental and numerical r e s ~ l t s ~ ~ , ~ ~  in the second-order fluid range. At 
higher De, our results have been seen to compare well qualitatively to pictures of non-Newtonian 
flows when the Reynolds number is We believe that the discrepancies we have observed 
using the Curtiss-Bird model in regard to vortex placement and predictions of P,  based on N ,  are 
genuine consequences of the fluid model. In the former case, we believe that we have identified an 
interesting interaction between shear-thinning, elasticity and inertia. In the latter case, we believe 
that our studies have identified important consequences to hole-pressure measurements involving 
the interaction of long-range memory effects and the disturbance induced by the slot. We have 
argued, in each case where our results are at odds with preconception, that the discrepancy is part 
of a coherent physical picture painted by our numerical model. We offer these numerical results, 
agreements and discrepancies, with the confidence that they will stand ultimately as the firmest 
evidence of the usefulness of the NRC element. 
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